Human Evolution
Human evolution is the lengthy process of change by which people originated from apelike ancestors. Scientific evidence shows that the physical and behavioral traits shared by all people originated from apelike ancestors and evolved over a period of approximately six million years.
One of the earliest defining human traits, bipedalism -- the ability to walk on two legs -- evolved over 4 million years ago. Other important human characteristics -- such as a large and complex brain, the ability to make and use tools, and the capacity for language -- developed more recently. Many advanced traits -- including complex symbolic expression, art, and elaborate cultural diversity -- emerged mainly during the past 100,000 years.
Humans are primates. Physical and genetic similarities show that the modern human species ,  Homo sapiens, has a very close relationship to another group of primate species, the apes. Humans and the great apes (large apes) of Africa -- chimpanzees (including bonobos, or so-called “pygmy chimpanzees”) and gorillas -- share a common ancestor that lived between 8 and 6 million years ago. Humans first evolved in Africa, and much of human evolution occurred on that continent. The fossils of early humans who lived between 6 and 2 million years ago come entirely from Africa.
Most scientists currently recognize some 15 to 20 different species of early humans. Scientists do not all agree, however, about how these species are related or which ones simply died out. Many early human species -- certainly the majority of them – left no living descendants. Scientists also debate over how to identify and classify particular species of early humans, and about what factors influenced the evolution and extinction of each species.
Early humans first migrated out of Africa into Asia probably between 2 million and 1.8 million years ago. They entered Europe somewhat later, between 1.5 million and 1 million years. Species of modern humans populated many parts of the world much later. For instance, people first came to Australia probably within the past 60,000 years and to the Americas within the past 30,000 years or so. The beginnings of agriculture and the rise of the first civilizations occurred within the past 12,000 years.

Paleoanthropology

Paleoanthropology is the scientific study of human evolution. Paleoanthropology is a subfield of anthropology, the study of human culture, society, and biology. The field involves an understanding of the similarities and differences between humans and other species in their genes, body form, physiology, and behavior. Paleoanthropologists search for the roots of human physical traits and behavior. They seek to discover how evolution has shaped the potentials, tendencies, and limitations of all people. For many people, paleoanthropology is an exciting scientific field because it investigates the origin, over millions of years, of the universal and defining traits of our species. However, some people find the concept of human evolution troubling because it can seem not to fit with religious and other traditional beliefs about how people, other living things, and the world came to be. Nevertheless, many people have come to reconcile their beliefs with the scientific evidence.
Early human fossils and archeological remains offer the most important clues about this ancient past. These remains include bones, tools and any other evidence (such as footprints, evidence of hearths, or butchery marks on animal bones) left by earlier people. Usually, the remains were buried and preserved naturally. They are then found either on the surface (exposed by rain, rivers, and wind erosion) or by digging in the ground. By studying fossilized bones, scientists learn about the physical appearance of earlier humans and how it changed. Bone size, shape, and markings left by muscles tell us how those predecessors moved around, held tools, and how the size of their brains changed over a long time. Archeological evidence refers to the things earlier people made and the places where scientists find them. By studying this type of evidence, archeologists can understand how early humans made and used tools and lived in their environments.

The process of evolution

The process of evolution involves a series of natural changes that cause species (populations of different organisms) to arise, adapt to the environment, and become extinct. All species or organisms have originated through the process of biological evolution. In animals that reproduce sexually, including humans, the term species refers to a group whose adult members regularly interbreed, resulting in fertile offspring -- that is, offspring themselves capable of reproducing. Scientists classify each species with a unique, two-part scientific name. In this system, modern humans are classified as Homo sapiens.
Evolution occurs when there is change in the genetic material -- the chemical molecule, DNA -- which is inherited from the parents, and especially in the proportions of different genes in a population. Genes represent the segments of DNA that provide the chemical code for producing proteins. Information contained in the DNA can change by a process known as mutation. The way particular genes are expressed – that is, how they influence the body or behavior of an organism -- can also change. Genes affect how the body and behavior of an organism develop during its life, and this is why genetically inherited characteristics can influence the likelihood of an organism’s survival and reproduction.
Evolution does not change any single individual. Instead, it changes the inherited means of growth and development that typify a population (a group of individuals of the same species living in a particular habitat). Parents pass adaptive genetic changes to their offspring, and ultimately these changes become common throughout a population. As a result, the offspring inherit those genetic characteristics that enhance their chances of survival and ability to give birth, which may work well until the environment changes. Over time, genetic change can alter a species' overall way of life, such as what it eats, how it grows, and where it can live. Human evolution took place as new genetic variations in early ancestor populations favored new abilities to adapt to environmental change and so altered the human way of life.
One of the most hotly debated issues in paleoanthropology (the study of human origins) focuses on the origins of modern humans, Homo sapiens.9,10,3,6,13,15,14Roughly 100,000 years ago, the Old World was occupied by a morphologically diverse group of hominids. In Africa and the Middle East there was Homo sapiens; in Asia, Homo erectus; and in Europe, Homo neanderthalensis. However, by 30,000 years ago this taxonomic diversity vanished and humans everywhere had evolved into the anatomically and behaviorally modern form. The nature of this transformation is the focus of great deliberation between two schools of thought: one that stresses multiregional continuity and the other that suggests a single origin for modern humans.

Understanding the issue

The Multiregional Continuity Model15 contends that after Homo erectus left Africa and dispersed into other portions of the Old World, regional populations slowly evolved into modern humans. This model contains the following components:
  • some level of gene flow between geographically separated populations prevented speciation, after the dispersal
  • all living humans derive from the species Homo erectus that left Africa nearly two million-years-ago
  • natural selection in regional populations, ever since their original dispersal, is responsible for the regional variants (sometimes called races) we see today
  • the emergence of Homo sapiens was not restricted to any one area, but was a phenomenon that occurred throughout the entire geographic range where humans lived
In contrast, the Out of Africa Model13 asserts that modern humans evolved relatively recently in Africa, migrated into Eurasia and replaced all populations which had descended from Homo erectus. Critical to this model are the following tenets:
  • after Homo erectus migrated out of Africa the different populations became reproductively isolated, evolving independently, and in some cases like the Neanderthals, into separate species
  • Homo sapiens arose in one place, probably Africa (geographically this includes the Middle East)
  • Homo sapiens ultimately migrated out of Africa and replaced all other human populations, without interbreeding
  • modern human variation is a relatively recent phenomenon
The multiregional view posits that genes from all human populations of the Old World flowed between different regions and by mixing together, contributed to what we see today as fully modern humans. The replacement hypothesis suggests that the genes in fully modern humans all came out of Africa. As these peoples migrated they replaced all other human populations with little or no interbreeding.
To understand this controversy, the anatomical, archaeological, and genetic evidence needs to be evaluated.

Anatomical evidence

Sometime prior to 1 million years ago early hominids, sometimes referred to as Homo ergaster, exited Africa and dispersed into other parts of the Old World. Living in disparate geographical areas their morphology became diversified through the processes of genetic drift and natural selection.
  • In Asia these hominids evolved into Peking Man and Java Man, collectively referred to as Homo erectus.
  • In Europe and western Asia they evolved into the Neanderthals.
Neanderthals lived in quasi isolation in Europe during a long, relatively cool period that even included glaciations. Neanderthals are distinguished by a unique set of anatomical features, including:
  • a large, long, low cranial vault with a well-developed double-arched browridge
  • a massive facial skeleton with a very projecting mid-face, backward sloping cheeks, and large nasal aperture, with large nasal sinuses
  • an oddly shaped occipital region of the skull with a bulge or bun
  • molars with enlarged pulp chambers, and large, often very heavily worn incisors
  • a mandible lacking a chin and possessing a large gap behind the last molar
  • a massive thorax, and relatively short forearms and lower legs
  • although short in stature they possessed robustly built skeletons with thick walled limb bones
  • long clavicles and very wide scapulas
    By 130,000 years ago, following a prolonged period of independent evolution in Europe, Neanderthals were so anatomically distinct that they are best classified as a separate species — Homo neanderthalensis. This is a classic example of geographic isolation leading to a speciation event.
    In contrast, at roughly the same time, in Africa, a body plan essentially like our own had appeared. While these early Homo sapiens were anatomically modern they were not behaviorally modern. It is significant that modern anatomy evolved prior to modern behavior. These early sapiens were characterized by:
    • a cranial vault with a vertical forehead, rounded occipital and reduced brow ridge
    • a reduced facial skeleton lacking a projecting mid-face
    • a lower jaw sporting a chin
    • a more modern, less robustly built skeleton
    Hence, the anatomical and paleogeographic evidence suggests that Neanderthals and early modern humans had been isolated from one another and were evolving separately into two distinct species.

Additional considerations

The chronology in the Middle East does not support the Multiregional Model where Neanderthals and anatomically modern humans overlapped for a long period of time.
  • The presence of Neanderthals at two other caves in Israel, Amud and Kebara, dated to roughly 55,000 years means that Neanderthals and Homo sapiens overlapped in this region for at least 55,000 years. Therefore, if Homo sapienswere in this region for some 55,000 years prior to the disappearance of the Neanderthals, there is no reason to assume that Neanderthals evolved into modern humans.
  • Archaeological evidence from Europe suggests that Neanderthals may have survived in the Iberian Peninsula until perhaps as recently as 30,000 to 35,000 years ago. Fully modern humans first appear in Europe at around 35,000-40,000 years ago, bringing with them an Upper Paleolithic tool tradition referred to as the Aurignacian. Hence, Neanderthals and fully modern humans may have overlapped for as much as 10,000 years in Europe. Again, with fully modern humans on the scene, it is not necessary to have Neanderthals evolve into modern humans, further bolstering the view that humans replaced Neanderthals.
  • The situation in southern France is, however, not quite as clear. Here, at several sites, dating to roughly 40,000 years there is evidence of an archaeological industry called the Châtelperronian that contains elements of Middle and Upper Paleolithic artifacts. Hominids from these sites are clearly Neanderthals, sparking speculation that the Châtelperronian is an example of Neanderthals mimicking the culture of modern humans. The lack of anatomical intermediates at these sites, suggests that if Neanderthals did encounter and borrow some technology from Homo sapiens, they did not interbreed.
  • A potential 24,500-year-old Neanderthal/sapiens hybrid was announced from the site of Lagar Velho, Portugal.4 This 4-year-old has a short, squat body like a Neanderthal, but possesses an anatomically modern skull. There are a number of problems with interpreting this find as a Neanderthal/sapiens hybrid.14 First of all, as a hybrid it should have a mixture of traits throughout its body and not possess the body of a Neanderthal and skull of a modern human. For example, if we look at hybrids of lions and tigers they do not possess the head of one species and the body of the other, but exhibit a morphological mixture of the two species. Secondly, and more importantly, acceptance of this specimen as a hybrid would suggest that Neanderthal traits had been retained for some 6,000 to 10,000 years after Neanderthals went extinct, which is highly unlikely. This is theoretically unlikely since Neanderthal traits would have been genetically swamped by the Homo sapiens genes over such a protracted period of time.
  • Proponents of the Multiregional Model, such as Milford Wolpoff, cite evidence in Asia of regional continuity. They see an evolutionary link between ancient Homo erectus in Java right through to Australian aborigines. A possible problem with this view is that recent dating of late surviving Homo erectus in Indonesia suggests that they survived here until 50,000 years ago, which is potentially when fully modern humans may have arrived in the region from Africa.
  • China may contain the best evidence for supporting the Multiregional Model. Here there are discoveries of a couple of skulls dated to roughly 100,000 years ago that seem to possess a mixture of classic Homo erectus and Homo sapienstraits. Better geological dating and more complete specimens are needed to more fully assess this possibility.
  • Cave sites in Israel, most notably Qafzeh and Skhul date to nearly 100,000 years and contain skeletons of anatomically modern humans. Furthermore, Neanderthal remains are known from sites such as the 110,000-year-old Tabun cave, which predates the earliest Homo sapiens by about 10,000 years in the region.


Comments

Popular posts from this blog

ALIEN